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Flow-induced vibration of a "xed}"xed elastic cylinder with a large aspect ratio (+58) is
considered. The structural vibration is modelled by the Euler}Bernoulli beam theory, and
the normal mode method is used to analyze the structural response. The #ow "eld are
resolved using a "nite element method and the #ow-induced forces are thereby calculated.
Altogether two di!erent cases are examined, one at resonance and another at o!-resonance.
Results thus obtained are compared with experimental measurements and a
discrete-parameter model [a two-degree-of-freedom (2-d.o.f.) model] analysis. The
comparison shows that, while the 2-d.o.f. model gives reasonable prediction of the mid-span
vibration displacements for the resonant and o!-resonant case, the present method yields
the span-wise multi-mode response of the cylinder similar to that observed experimentally.
Based on these results, a correction formula is derived to estimate the span-wise vibration
from the 2-d.o.f. model result. Correlation results are also presented to show that
#uid}structure interactions mainly a!ect the phase relation between the #uid forces and the
corresponding vibration of the cylinder. Such in#uences have di!erent e!ects along the
cylinder span.
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1. INTRODUCTION

A simple #ow-induced vibration problem is one represented by a two-dimensional cylinder
in a cross-#ow. In this problem, two di!erent situations can be identi"ed: One is the free
vibration of the cylinder given rise by the #ow-induced forces created by the shed vortices,
another is the forced vibration of the cylinder. The forcing can be mechanically applied
[1, 2], or it can be induced by upstream vortices [3]. In the forced vibration case, if the
cylinder is also elastic, there will be vortex-induced vibrations superposed on the forced
vibration. For a relatively rigid cylinder, the problem is dominated by the imposed
oscillation frequency. A lock-on phenomenon arises when the forcing frequency is equal to
the shedding frequency [1, 2, 4]. On the other hand, in the free-vibration case, where there is
no external excitation, the phenomenon of interest is resonance (or synchronization). This
occurs when the shedding frequency is identical to the natural frequency of the combined
#uid}cylinder system [5}7]. The present study only considers the free-vibration case and
leaves the forced-vibration case to a later investigation.

Flow-induced vibration of a single circular cylinder has been extensively investigated
[4, 8, 9]. Usually, a cylinder with large aspect ratio and no end exposed in the #ow is
considered, so that the #ow is essentially two-dimensional along a major portion of the
span. However, the structural response is not necessarily two-dimensional when the
cylinder is elastic. Among the experimental investigations are the studies of references
[10}15], to mention a few. On the other hand, relatively little work has been carried out on
0022-460X/01/220241#28 $35.00/0 ( 2001 Academic Press
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the numerical simulation of #ow-induced vibration of a cylinder in a cross-#ow. In some
earlier work, only the transverse vibration of the cylinder, which was assumed to be
harmonic, was considered [16]. The motion of the cylinder was restricted to one degree of
freedom. It is worth noting that the one-degree-of-freedom (1-d.o.f.) structural model was
also adopted, along with a Van der Pol-type equation for the lift force, to give
a semi-analytical analysis of the vortex-induced resonant vibration of an elastically
mounted rigid cylinder [5, 17, 18]. In a di!erent numerical approach, Zhou et al. [19]
studied the resonance behavior at a Reynolds number, Re"200, using
a two-degree-of-freedom (2-d.o.f.) model to account for the structural response in both the
transverse and stream-wise direction and a vortex dynamics method to resolve the #ow
"eld. It was found that a 1-d.o.f. model might not be su$cient to describe the structural
dynamics correctly since the stream-wise motion of the cylinder does a!ect the transverse
motion. The 2-d.o.f. model was also used by So et al. [20] to simulate vortex-induced
vibration of a cylinder at sub-critical Re. Instead of the vortex dynamics method, a "nite
element technique was used to solve the two-dimensional Navier}Stokes equation
governing the #ow "eld. The numerical results were compared with experimental
measurements at the mid-span of an elastic cylinder, and reasonable agreement was
obtained. In all these calculations, the vibration modes and the span-wise correlation of the
vibration amplitude with the #ow-induced forces are not known, because the 2-d.o.f. model
cannot provide such information.

A distributed-parameter beam model is thus necessary. Numerous investigators [21}23]
used such a model to examine the #exural vibration of an elastic cylinder. Assuming the
Euler}Bernoulli beam model, Skop and Gri$n [24] and Skop and Balasubramanian [25]
extended the semi-analytical approach to treat elastic cylinders. Mukhopadhyay and
Dugungji [26] also invoked this approach to study wind-excited vibration of a square
cantilever beam. However, the use of distributed-parameter beam model in numerical
simulations has not been attempted so far. In a direct numerical simulation of the #ow past
a vibrating cable, Newman and Karniadakis [27] expressed the structural motion as
a Fourier expansion along the cable span. This is equivalent to using the
distributed-parameter string model for the cable without considering the boundary
conditions, that is, the cable is assumed to be in"nitely long.

Usually, experimental studies were carried out with "nite-span cylinders having fairly
large aspect ratios and the cylinders were "xed at both ends. Thus, the vortex-induced
motion would be the superposition of di!erent mode responses depending on whether the
case under investigation is o!-resonance or not, and whether the #ow is three dimensional
or not. In practice, especially for Re'400, the wake #ow is not two dimensional [28];
hence the induced force along the span is not constant. None of the above approaches
could be easily modi"ed to simulate the actual experimental conditions; therefore,
span-wise vibration and modal information of the cylinder are not available. Also, the
approaches were not suitable for problems where the non-linear #uid}structure interaction
becomes very dominant, such as in resonance or close to resonance situation [29]. In view
of this, the present objective is to concentrate on the modal analysis of the #uid}cylinder
system and attempt to simulate the experimental investigations directly assuming
two-dimensional laminar #ow.

If modal analysis is used to determine the cylinder vibration, then a three-dimensional
#ow calculation program has to be used to analyze the #ow if the #uid structure interaction
were to be predicted correctly. Therefore, the assumption of two-dimensional laminar #ow
needs justi"cation. This is especially true for #ows whose Re'1000, because recent
numerical studies [30, 31] have shown that the wake #ow is three-dimensional
and turbulent even when the approach #ow is laminar and two-dimensional. In
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#ow-induced vibration problems, the important parameters to replicate are the frequencies
of vortex shedding and the amplitude of oscillations of the unsteady forces. If these two
parameters are calculated fairly correctly under the two-dimensional assumption, the
structural dynamics could be estimated correctly as well, and the possibility of resolving
resonance behavior could be much enhanced.

In the subcritical Re range, the mean drag is fairly constant and so is the Strouhal number
[32}34]. Furthermore, in this Re range, if the oncoming #ow is uniform and laminar,
Strouhal excitation still dominates and the cylinder response is Strouhal-like up to
Re'105 [35]. This suggests that a laminar formulation to the #ow-induced vibration
problem in this Re range could be appropriate as long as the induced force is Strouhal
excitation and its major frequency is identical to the vortex shedding frequency. So et al.
[20] used these arguments to justify the two-dimensional laminar approach for long slender
cylinders with Re(5000. Good agreement with experimental data has been obtained for
rigid and elastic cylinders in a cross #ow. In view of this, their two-dimensional laminar #ow
analysis will be used in the current investigation.

Therefore, the present objective is to introduce the normal mode method into the
numerical simulation, with the aim of investigating the free vibration of a slender elastic
cylinder with "xed ends in a cross #ow. The #ow "eld is still simulated by the "nite element
method of So et al. [20], but the Euler-Bernouilli beam theory is used to model the #exural
vibration of the cylinder, and the normal mode method is used to determine the span-wise
structural response in the lift and drag direction. In this formulation, the #uid-structure
interaction is taken into account directly through the time marching technique proposed by
Jadic et al. [36]. A comparison with experimental measurements and the numerical results
obtained from the 2 d.o.f. model is carried out. Based on these calculations, a correction
formula for the 2 d.o.f. model is derived to estimate the cylinder span-wise vibration. The
results are compared with experimental data obtained for the resonant and o!-resonant
cases.

2. NUMERICAL FORMULATION

There are four components to the numerical formulation of any #uid}structure
interaction problem if it is to be evaluated correctly. The "rst concerns with the modelling of
the #ow "eld around the structure. This model should be versatile enough to accommodate
a moving boundary in order to allow for the motion of the structure. The second is the
evaluation of the dynamics of the structure as a result of the #ow-induced forces. If this
model is to be complete, it should be able to resolve the vibrations of the structure taking
into account numerous e!ects associated with the structural properties and the mode shape.
The third is the ability to resolve the #uid}structure interaction accurately, so that at any
time step the unsteady #uid forces acting on the structure are correctly determined and the
motions of the structure are calculated with reliability. Finally, it is the analysis of the
calculated results. All calculated properties, such as the velocities, the lift and drag
coe$cients, the displacement amplitudes, etc., are in the form of time series. In principle, the
time series contain all the information concerning the behavior of the #ow, #uid damping
and the structural dynamics. The key is to "nd a data analysis technique that could extract
the information out completely with accuracy.

The time-marching method proposed by Jadic et al. [36] addresses these four
components in a fairly complete manner. The present formulation intends to improve on
their proposal in two ways. The "rst is to use a general numerical method to calculate the
#ow and the wake behind the structure in order to relax the free wake model, which is only
appropriate for attached #ows. The "nite element method with a moving mesh proposed by



Figure 1. The #ow chart illustrating the principle of the time-marching technique.
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So et al. [20] is adopted. The second is to use the Euler}Bernoulli beam model for the
structural dynamics, thus replacing the 2-d.o.f. model used in references [20, 36]. The #ow
chart illustrating the principle of the time-marching technique is shown in Figure 1.

In the present problem, the cylinder motion at any time step is completely controlled by
the #uid forces, which are determined by the #ow around the cylinder at that time step. The
cylinder motion is, in turn, used to modify the boundary conditions of the #ow "eld, from
which the #uid forces are updated and used to calculate the cylinder motion at the next time
step. This is where the moving mesh concept can be used to treat the moving boundary
problem. Instead of using the Lagrangian}Eulerian method [37], an alternative mesh
re-mapping procedure [20, 38] is invoked. This procedure can be easily implemented into
the operator-splitting method, which is used to resolve the #ow "eld in the present
approach.

2.1. THE FLUID FLOW MODEL

A two-dimensional #ow of an incompressible, viscous Newtonian #uid around an elastic
slender cylinder "xed at both ends is considered. The #ow is governed by the Navier}Stokes
equations

Lu

Lt*
#(u )+ )u"!+p#

1

Re
+2u, + ) u"0, (1, 2)

where u is the dimensionless velocity vector normalized by the free-stream velocity ;
=
,

t*"t;
=
/D is the dimensionless time, p is the dimensionless pressure normalized by o;2

=
,
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Re";
=

D/v is the Reynolds number, D is cylinder diameter, o is #uid density and v is the
#uid kinematic viscosity. The boundary and initial conditions can be speci"ed as

uD
S
"u

b
and uD

t/0
"u

0
, (3)

where S is the boundary of the domain < occupied by the #uid.
The operator-splitting method [39] is used to solve the Navier}Stokes equations. The

h scheme of the operator-splitting method is invoked for time discretization, thus
de-coupling the non-linear equations into the following three fractional time steps:

Step 1:
un`h!un

hDt*
!av+2un`h#+pn`h"bv+2un!(un )+ )un,

+ ) un`h"0, (4a)

Step 2:
un`1~h!un`h
(1!2h)Dt*

!bv+2un`1~h#(un`1~h )+ )un`1~h"av+2un`h!+pn`h, (4b)

Step 3:
un`1!un`1~h

hDt*
!av+2un`1#+pn`1"bv+2un`1~h!(un`1~h )+ )un`1~h,

+ ) un`1"0, (4c)

where Dt* is the time step, h is a number between 0 and 0)5, a"(1!2h)/(1!h) and
b"h/(1!h). After time discretization, the equations for the "rst and the third steps are of
the Stokes type, while the equation for the second step is of the advection type. At each
fractional time step, the spatial discretization is carried out using the standard Galerkin
method.

After the velocity and the pressure "eld has been obtained, the force applied to the
structure is calculated using the following formula:

f(z*, t*)"Q A!pn#
1

Re
(+u#+uT ) ) nBDzds, (5)

where the integration is performed around the circumference of the cylinder with arc length
s at each span-wise location z*, Dz is the elemental length along the span and n is the
outward unit normal on the cylinder. The force vector, f"M f

D
f
L
N, consists of two

components, the dimensionless unsteady drag and lift force. Thus, the lift and drag
coe$cients are de"ned as C

L
"2f

L
/(o;2

=
DznD) and C

D
"2f

D
/(o;2

=
DznD) respectively. All

the calculated results are in the form of time series. From this point on, an overbar is used to
denote the time average and a prime to designate the root-mean-square (r.m.s) value of the
signal. Therefore, the mean and r.m.s. value of C

D
is CM

D
and C@

D
respectively.

2.2. THE STRUCTURAL DYNAMICS MODEL

The modal analysis method is proposed for the present analysis and the vibration of the
cylinder is modelled by the Euler}Bernoulli beam theory [40]. According to this theory, the
dimensional equation of motion of the cylinder is given by

m
cy

L2w(z, t)

Lt2
#c

Lw (z, t)

Lt
#EI

L4w (z, t)

Lz4
"F (z, t). (6)
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When the cylinder is "xed at both ends, the boundary conditions can be speci"ed as

w (!¸/2, t)"0, w (¸/2, t)"0,
Lw(!¸/2, t)

Lz
"0,

Lw(¸/2, t)

Lz
"0, (7)

where w"MX >N is the displacement vector consisting of the displacement components in
the drag(x) and lift (y) direction, ¸ is the length of the cylinder, EI is the sti!ness, m

cy
and

c are the mass and damping coe$cient per unit length of the cylinder, respectively, and
F"MF

D
, F

L
N is the #uid force vector. The material of the cylinder is assumed to be isotropic

and homogeneous, and the structural coupling between the motion in the x and y directions
is not considered.

Using the modal analysis method, the solution of equation (6) can be assumed in the form

w (z, t)"
N
+

m/1

=
m
(z)g

m
(t), (8)

where=
m
(z) is the mth normal mode shape of the undamped cylinder associated with the

natural frequency f
nm

, g
m

is the generalized co-ordinate, and N is the number of normal
modes considered. Applying the normal mode method, the following dynamic equation can
be deduced:
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Here, f
sm

is the mth mode damping ratio of the cylinder and the dot represents time
derivative. The dynamic equation (9) is made dimensionless using the same parameters as
those adopted for the Navier}Stokes equations, thus giving rise to
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where ;
rm
";

=
/ f

nm
D is the reduced velocity corresponding to f

nm
, M

r
"m

cy
/oD2 is the

mass ratio, and f
m

is the mth mode generalized dimensionless force given by

f
m
(t*)"P=m

(z*)f (z*, t*) dz*, m"1, 2,2 . (11)

The present beam model predicts both the transverse and the stream-wise vibration of the
cylinder along the span. In this sense, it accounts for the three-dimensional structural
dynamics. The unsteady force vector, f"M f

D
, f

L
N, is generally a function of time and the

span-wise co-ordinate and, in principle, should be calculated based on a three-dimensional
#ow model. However, the #ow "eld is assumed to be two-dimensional for a long slender
cylinder, that is, f is independent of the span-wise co-ordinate z*. Thus, the generalized force
can be expressed as

f
m
(t*)"P=m

(z*)f(t*) dz*, m"1, 2,2 . (12)

A fourth order Runge}Kutta method is used to solve equation (10). Once g
m
(t*) and

g5
m
(t*) are evaluated, the dimensionless displacement and velocity of the cylinder are
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calculated using the following equations:

w*(z*, t*)"
N
+

m/1

=
m
(z*)g

m
(t*), w5 * (z*, t*)"

N
+

m/1

=
m
(z*)g5

m
(t*). (13a, b)

2.3. CORRECTION FORMULA FOR 2-d.o.f. MODEL

The 2-d.o.f. model is often used in previous numerical investigations of vortex-induced
vibration, where only one vibration mode (usually the fundamental mode) is considered.
The dynamic equation for the 2-d.o.f. model, in dimensionless form, can be written as
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where f
s
is the damping ratio of the cylinder which is assumed to be constant,;

r
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is the reduced velocity, f *
n

is the natural frequency of the stationary cylinder and f (t*) is the
unsteady #uid force vector. In order to compare the beam model with the 2-d.o.f. model,
equation (10) is re-written in the form
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where m refers to the vibration mode considered in the 2-d.o.f. model. In general, the #uid
force, f(t*), in equations (14) and (15b) is not the same since the e!ect of the #uid}structure
interaction might be di!erent. However, from the numerical results to be presented later, it
can be seen that the r.m.s. value and the dominant frequency of the #uid force is almost
identical for the modal analysis method and the 2-d.o.f. model. Since the span-wise
vibration shape represents the magnitude of the vibration only, such a feature makes it
possible to estimate the span-wise vibration shape of the cylinder using the result obtained
from the 2-d.o.f. model and the correction (15b). This is further discussed in section 3.1.

2.4. FLUID}STRUCTURE INTERACTION

From a computational point of view, #ow-induced vibration is a moving boundary
problem because the cylinder is free to move under the action of the #ow-induced unsteady
forces in the #uid. The boundary of the computational domain is varied with the cylinder
motion, and the no-slip boundary condition is applied on the surface of the cylinder. The
mesh is deformed accordingly also. The mesh re-mapping procedure proposed by Mooney
and Stokes [38] is invoked in the present approach. A Laplacian equation of displacement
is solved to minimize the local mesh deformation. The Laplacian equation is expressed as

+2d"0 (16)

with the boundary conditions given by d"0 at the outer boundary and d"w* at the
boundary of the cylinder where d is the deformation of the mesh nodes. The mesh is then



248 X. Q. WANG E¹ A¸.
re-mapped according to the deformation. In order to correctly account for the
#uid}structure interaction, a time marching is carried out within each time step in an
iterative way, until the stable status is reached (Figure 1). In such a time-marching process,
the cylinder motion, the #ow "eld, and the #uid forces are updated but the time is not
marching in reality. The dashed (virtual) line in Figure 1 shows this step in the numerical
computation. The readers are referred to Jadic et al. [36] for a detailed description of the
process.

2.5. DATA ANALYSIS

The time-marching approach gives time series for the #uid forces, cylinder vibrations,
#ow velocity pro"les, and so on. Data analysis of these time series is necessary in order to
obtain statistics and spectra, which add up to give an understanding of the #ow-induced
vibration problem. The computation of statistics is straightforward, while many methods
are available for spectral analysis. One of them, the auto-regressive moving average
(ARMA) method [41], has been successfully applied to perform spectral analysis of time
series in both experimental and numerical studies of #ow-induced vibration problems
[15, 19, 20]. Therefore, this method is employed in the present study.

3. COMPARISON WITH MEASUREMENTS AND 2-D.O.F. PREDICTIONS

The free vibration of an elastic cylinder in a cross-#ow at sub-critical Re range is
simulated. The parameters of the #uid}structure system are chosen so that they match the
experimental speci"cations [15] and are identical to the numerical cases considered by So
et al. [20] in their 2-d.o.f. model calculations. That way, the present results can be compared
with the experimental measurements and the 2-d.o.f. predictions.

The structural parameters of the cylinder are listed in Table 1. Two cases are chosen for
comparison; one is the resonant case (;

r1
"4)5, Re"994), where the frequency of the "rst

vibration mode of the #uid}cylinder system was found to be equal to the vortex-shedding
frequency. The other is the o!-resonant case (;

r1
"16)4, Re"3900), where no resonance or

synchronization occurs. Here, ;
r1

is the reduced velocity corresponding to the natural
frequency of the "rst mode of vibration of the cylinder. The spin-wise vibration of the
cylinder is calculated using equations (13) and (15) at a series of span-wise locations, z*"0,
5)3030, 10)6061, 15)9091, 21)2121, 26)5152, and 29)1667, where z*"0 is the mid-span of the
cylinder. Since the motion of the cylinder is assumed to be symmetric about the mid-span,
only the vibration of one half of the cylinder needs to be calculated. The "rst four vibration
modes of the cylinder are considered in the computation. Actually, since the mode shapes of
TABLE 1

Structural parameters of the cylinder

¸ D Natural frequencies (Hz) and damping ratios
Material (mm) (mm) M

r
(in stationary air)

Acrylic 350)0 6)0 455)0 f *
n1
"99 f *

n2
"272 f *

n3
"534 f *

n4
"883

f
s1
"0)03 f

s2
"0)02 f

s3
"0)017 f

s4
"0)01



Figure 2. Illustration of the mesh deformation. Resonant case, M
r
"1: (a) undeformed mesh; (b) deformed mesh

(at maximum displacement).
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the second and the fourth modes are antisymmetric about the mid-span, the responses of
these two modes are identically zero, thus only the "rst and third modes contribute to the
the total vibration of the cylinder.

In order to illustrate the e!ectiveness of the mesh re-mapping technique, the "nite
element meshes at two di!erent time steps for the resonant case are shown in Figure 2. This
resonant case is identical to the case listed above, except that M

r
"1 has been assumed. The

reason for this assumption is to obtain larger displacements so that the mesh deformation
can be clearly shown. The "nite element mesh at a time step when the cylinder has no
displacement is shown in Figure 2(a). Its corresponding mesh at a time step when the
cylinder reaches its maximum displacement is displayed in Figure 2(b). It is obvious that
the mesh re-mapping technique is quite suitable for this kind of moving boundary
problems.
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3.1. OFF-RESONANT CASE

The time series of the calculated C
L
, C

D
, and X and > displacements at the mid-span of

the cylinder are plotted in Figures 3(a)}3(d) respectively. The dimensionless time step is 0)1.
It can be seen that all time series have reached their stationary state, and the statistics given
below are calculated based on the stationary period alone. The calculated >@/D of the
cylinder is plotted in Figure 4(a) for comparison with experimental measurements [15] and
numerical results obtained from the 2-d.o.f. model. Again, the prime is used to denote r.m.s.
value and the overbar to designate the time-average value. The comparison shows that the
modal analysis calculations and the measurements give similar span-wise vibration shapes.
Particularly, the multi-mode response of the cylinder is clearly reproduced by the modal
analysis. The prediction by the 2-d.o.f. model is given in the "gure by a dashed-dot line. It
can be seen that the prediction is almost the same as that given by the modal analysis
method at the mid-span of the cylinder.
Figure 3. Time series of the #uid force coe$cients and cylinder vibrations. O!-resonant case.



Figure 3. Continued.
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The multi-mode response of the cylinder is the superposition result of the responses due
to a number of vibration modes excited by the #uid force. The present method gives some
detail on such a behavior (Figure 4(b)). The responses due to the "rst and the third mode
(Modes 1 and 3) are plotted separately in the "gure to show their own contributions. It can
be seen that the amplitude ratio of Modes 1 and 3 is about 4 : 1, thus giving rise to the
superposed behavior of the total vibration. It is slightly di!erent for X@/D whose span-wise
vibration shapes are shown in Figure 4(c). The stream-wise vibration consists of two
components, one a static part and another a #uctuating part. Therefore, two span-wise
vibration shapes are plotted, one is the purely #uctuating displacement (Figure 4(c)), and the
other is the total motion including the static displacement (Figure 4(d)). It can be seen that
the #uctuating span-wise vibration also shows the feature of the multi-mode response, while
the span-wise vibration of the total motion does not, because the static displacement is
dominant and has a shape similar to the response of Mode 1.

The normalized frequency spectra of >/D at mid-span are compared in Figure 5. The
values of the Strouhal number, St, the natural frequencies, f

nm
, and the e!ective damping
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ratios, f
em

, are listed in Table 2, where m refers to the mode number and n denotes the
natural frequency of the #uid}cylinder system. The e!ective damping ratio is the sum of the
#uid damping and structural damping. It can be seen that the modal analysis method and
the 2-d.o.f. model predicts the same value of St, and the prediction agrees well with
experimental measurements, the relative error is about 6)7%. The present method predicts
two natural frequencies of system, f

n1
"0)0728, and f

n3
"0)3442. They are in fair agreement

with experimental measurements, where the peaks can be identi"ed at f
n1
"0)0568, and

f
n3
"0)3029. The 2-d.o.f. model predicts the "rst natural frequency at f

n
"0)0661 only, since

the third vibration mode is not considered. The predicted values of f
em

by the present
method and the 2-d.o.f. model are similar; both are larger than experimental measurements.
This may be due to the fact that the initial values of the structural damping ratio given in
Table 1 are calculated theoretically and slightly di!erent from the actual experimental
Figure 4. Span-wise vibration of the cylinder. O!-resonant case. (a) Comparison of computational and
experimental results in the lift direction: *s*s*, experiment; *#]*#]*, computation (beam model); and
- ) - ) - ), computation (2-d.o.f. model). (b) Calculated span-wise vibration of the cylinder in the lift direction:**,
total motion; - ) - ) - ) -, Mode 1; and ) ) ) ) ), Mode 3. (c) Calculated span-wise vibration of the cylinder in the drag
direction:**, total motion; - ) - ) - ) -, Mode 1; and ) ) ) ) ), Mode 3. (d) Calculated span-wise vibration of the cylinder
in the drag direction: **, total motion; - ) - ) - ) -, Mode 1; and ) ) ) ) ), Mode 3.



Figure 4. Continued.
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values. Furthermore, during the experiments, the cylinder has to be mounted and
dismounted regularly; thus the "xed-end support of the cylinder and hence the structural
damping ratio might be a!ected.

Apart from the frequencies associated with Modes 1 and 3, more frequency peaks are
observed in the experimental spectrum. The two peaks in the low-frequency range
are associated with the fan and wind tunnel vibration. The peaks at 1/;

r
+0)15 and 0)50 are

related to the second and the fourth mode of the cylinder respectively. Several factors in the
experiment may contribute to the appearance of these two peaks, e.g., the cylinder (along
with the end supports) is not perfectly uniform along the span or symmetric about its
mid-span, the #ow "eld is not perfectly two dimensional, or the presence of #ow turbulence.

A detailed comparison of the statistics at mid-span, obtained by experimental
measurement, the modal analysis method, and the 2-d.o.f. model, is given in Table 3. It can
be seen that the present approach and the 2-d.o.f. model give similar predictions of the lift
and drag coe$cients. At mid-span, the 2-d.o.f. model predicts the same >@/D value as the
present approach. However, considering the fact that the 2-d.o.f. model only takes the "rst
mode of the cylinder into account, the 2-d.o.f. model prediction should be compared with



Figure 5. Comparison of frequency spectra of the cylinder vibration at mid-span: computation versus
experiment. O!-resonant case:**, computation (beam model); - ) - ) - ) - ) -, computation (2-d.o.f. model); and ) ) ) ) ),
experiment.

TABLE 2

Comparison of Strouhal number, natural frequencies and damping ratios of the -uid}cylinder
system in the o+-resonant case (;

r1
"16)4, Re"3900)

Experiment Computation

2-d.o.f. model Beam model

Total Mode 1 Mode 3 Total Mode 1 Mode 3

St 0)2284 * * 0)2132 0)2132 * *

f
nm

* 0)0568 0)3029 0)0661 * 0)0728 0)3442
f
em

* 0)0262 0)0078 0)1093 * 0)1675 0)0190

TABLE 3

Comparison of experimental and numerical results in the o+-resonant case (;
r1
"16)4,

Re"3900)

Experiment Computation

2-d.o.f. model Beam model

Total Mode 1 Mode 3 Total Mode 1 Mode 3

CM
L

* NA NA 0)0018 !0)0026 NA NA
C@

L
* NA NA 0)6801 0)6783 NA NA

CM
D

* NA NA 0)9362 0)9362 NA NA
C@

D
* NA NA 0)0875 0)0888 NA NA

>M /D 0)0 * * 0)00001 0)00002 0)00002 !7)2]10~7
>@/D 0)00032 * * 0)00045 0)00045 0)00060 0)00015
XM /D * * * 0)0070 0)0094 0)0093 0)0001
X@/D * * * 4)16]10~5 4)33]10~5 3)66]10~5 1)67]10~5
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the >@/D value of Mode 1 predicted by the modal analysis method. It can then be seen that
the modal analysis prediction is higher than the 2-d.o.f. result. This is not unexpected based
on equations (13) and (14). When the predicted magnitude of the #uid force, f (t*), is almost
the same for the 2-d.o.f. model and the modal analysis method, the actual excitation forces
are di!erent by a factor of =

n
(z*):=

n
(z*) dz* which is related to the normal mode of the

cylinder. For the "rst mode, =
n
(z*):=

n
(z*) dz*"1)3246 at mid-span, and the excitation

force given by the modal analysis method is larger, thus resulting in a larger prediction of
>@/D. The case is the same for XM /D and X@/D.

3.2. RESONANT CASE

The time series of the calculated C
L
, C

D
, X and > are plotted in Figures 6(a)}6(d)

respectively. The time step used is identical to the o!-resonant case, and again the
Figure 6. Time series of the #uid force coe$cients and cylinder vibrations. Resonant case.



Figure 6. Continued.
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calculation is carried out until a su$ciently long stationary period in these time series is
available for analysis. Comparison of the span-wise distribution of >@/D at resonance is
given in Figure 7. The present method predicts the same vibration shape as the experimental
measurement only in a qualitative sense. The quantitative agreement is poor compared to
the o!-resonant case. The 2-d.o.f. model result is also plotted in the "gure, and it can be seen
that it gives a slightly better estimate at mid-span. The di!erence between the 2-d.o.f. model
calculation and the modal analysis result could be accounted for using the correction
formula given in equation (15b); the analysis is given below. One possible reason for the big
di!erence between calculations and measurements could be due to the fact that the reduced
velocity at which the maximum resonance peak appears cannot be exactly located in the
experiment. In fact, the resonance peak is identi"ed at ;

r1
"4)2 experimentally, and the

present numerical results are calculated at ;
r1
"4)5 since it is found that ;

r1
"4)2 is not

the exact location where the resonance peak appears. Using ;
r1
"4)2 in the computation

reduces the prediction of >@/D, but two close peaks appear in the frequency spectrum,



Figure 7. Span-wise vibration of the cylinder. Resonant case. (a) Comparison of computational and
experimental results in the lift direction: *s*s*, experiment; *#]*#]*, computation (beam model, total
motion), - - - - -, computation (2-d.o.f. model). Computation (beam model): ) ) ) ) ), Mode 1; and - ) - ) - ) -, Mode 3. (b)
Calculated span-wise vibration of the cylinder in the drag direction:**, total motion; - ) - ) - ) -, Mode 1; and ) ) ) ) ),
Mode 3.
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implying that the exact resonance point has not been reached yet. Another possible reason
is the e!ects of three-dimensional #ow. They a!ect #ow-induced vibrations in two di!erent
ways. One is that the amplitude of the #uid force is not constant along the cylinder span,
and the other is that the time-varying #uid force is not perfectly correlated along the
span, and other is that the time-varying #uid force is not perfectly correlated along the span.
A third possible reason is the acrylic cylinder used in the experiments. Since they are made
from o!-the-shelf acrylic tubes, the structural damping may show certain non-linearity
when the vibration displacement is large, particularly in the resonant case. This also give
rise to the lower displacement of the cylinder. A fourth reason could be the span-wise
curvature of the cylinder, which results as a consequence of the mean drag acting on the
cylinder. This di!ers from the planar assumption invoked in the Euler}Bernoulli beam



Figure 8. Comparison of frequency spectra of the cylinder vibration at mid-span: computation versus
experiment. Resonant case: **, computation (beam model); - ) - ) - ) -, computation (2-d.o.f. model); and ) ) ) ) ),
experiment.

TABLE 4

Comparison of Strouhal number, natural frequencies and damping ratios of the -uid}cylinder
system in the resonant case (;

r1
"4)5, Re"944)

Experiment Computation

2-d.o.f. model Beam model

Total Mode 1 Mode 3 Total Mode 1 Mode 3

St 0)2150 NA NA 0)2036 0)2036 NA NA
f
nm

NA 0)2150 1)1255 0)2036 NA 0)2036 1)1971
f
em

NA 0)0104 0)0227 !0)00008 NA !0)00032 0)0112
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theory. At present, attempts are being made to evaluate the relative e!ects of these possible
causes. The work will be reported separately later.

The response of the cylinder in the resonant case is also due to both Modes 1 and
3 (Figure 7(a)). Compared with the o!-resonant case, however, the contribution of Mode 3 is
almost zero, and the response of Mode 1 is dominant. The span-wise distribution of X@/D
yields similar behavior (Figure 7(b)).

The comparison of the normalized frequency spectra of >/D at mid-span is shown in
Figure 8. The values of St, f

nm
and f

em
are listed in Table 4. At resonance, the shedding

frequency, St, synchronizes with the fundamental natural frequency of the combined
#uid}cylinder system, f

n1
, and there is only one peak at 1/;

r
"0)2036 in the spectra of the

numerical results. This agrees with the frequency peak at 1/;
r
"0)2150 in the experimental

spectrum. The frequency peak at the low-frequency range (1/;
r
+0)02) in the experimental



TABLE 5

Comparison of experimental and numerical results in the resonant case (;
r1
"4)5, Re"994)

Experiment Computation

2-d.o.f. model Beam model

Total Mode 1 Mode 3 Total Mode 1 Mode 3

CM
L

* NA NA !0)0010 !0)0141 NA NA
C@

L
* NA NA 0)6861 0)6788 NA NA

CM
D

* NA NA 1)0695 1)0684 NA NA
C@

D
* NA NA 0)0623 0)0569 NA NA

>M /D 0)0 * * !2)8]10~6 !0)00002!0)00002 1)4]10~7
>@/D 0)00024 * * 0)00049 0)00065 0)00064 0)00001
XM /D * * * 0)00060 0)00081 0)00080 0)00001
X@/D * * * 0)00021 0)00025 0)00025 5)6]10~7
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spectrum is due to low-frequency vibration of the wind tunnel. The present approach also
predicts the response of the third mode of the #uid}cylinder system at f

n3
"1)1971, while

the experimental spectrum shows a peak at f
n3
"1)1255. In the spectrum predicted by the

2-d.o.f. model, only the peak at 1/;
r
"0)2036 is observed. This is reasonable since the third

mode of the cylinder is not considered in that model. The predicted f
e3

by the present
method is smaller than experimental measurement. The predictions of f

e1
by both

numerical methods are negative and very close to zero, indicating the appearance of a very
sharp frequency peak where synchronization occurs.

The statistics of the experimental measurements, the modal calculations and the 2-d.o.f.
model predictions are compared in Table 5. Both the present approach and the 2-d.o.f.
model give similar predictions of the lift and drag coe$cients. As for >M /D, >@/D, XM /D and
X@/D, the 2-d.o.f. model gives a relatively more accurate prediction, while the present
approach predicts larger values. This discrepancy is analyzed below.

4. CORRECTION FOR THE 2-D.O.F. MODEL

In section 2.3, it is shown that the span-wise vibration shape can be estimated from the
2-d.o.f. model result, provided that the magnitude and the dominant frequency of the
unsteady forces are not a!ected too much by the #uid}structure interaction. At mid-span,
this condition is essentially veri"ed by the statistics of C

L
and C

D
given in Tables 2 and 3.

The span-wise distributions of C@
L

and C@
D
, and St, for both the resonant and o!-resonant

cases, are plotted in Figures 9(a)}9(b) respectively. It can be seen that they are almost
constant along the cylinder span. This suggests that both the 2-d.o.f. model and the present
approach predict similar magnitudes and dominant frequencies for the unsteady
#ow-induced forces.

A formula can then be derived to estimate the span-wise vibration of the cylinder from the
2-d.o.f. model result. This can be accomplished by dividing both sides of equation (15b) by
=

n
(z*):=

n
(z*) dz*. Comparing with equation (14), the following result is obtained:

w*
n
(z*, t*)"w (t*)=

n
(z*)P=n

(z*) dz*. (17)



Figure 9. Span-wise force coe$cients and Strouhal number. (a) Force coe$cients: *#]*#]*, o!-resonant
case; *s*s*, resonant case. (b) Strouhal number: *#]*#]*, o!-resonant case; *s*s*, resonant case.
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The span-wise vibration shape estimated from the 2-d.o.f. model calculation using equation
(17) is plotted in Figure 10 for comparison with the modal analysis result. It can be seen that
the estimation is not too satisfactory for the o!-resonant case (Figure 10(a)), but is very
good for the resonant case (Figure 10(b)). This is expected because only one mode is
considered in the 2-d.o.f. model. There is only one mode excited in the resonant case and
both Modes 1 and 3 are excited in the o!-resonant case. In the latter case, the span-wise
vibration can be estimated using the vibration displacement at mid-span deduced from the
modal analysis method. Equation (17) then becomes

w*
n
(z*, t*)"

w*
n
(z*

0
, t*)

=
n
(z*

0
)
=

n
(z*), (18)

where w
n
(z*

0
, t*) is the vibration at z*"z*

0
obtained from the modal analysis method. The

span-wise vibration calculated using equation (18) is plotted in Figure 11. It can be seen that



Figure 10. Span-wise vibration of the cylinder in the lift direction: comparison of the predictions by using the
beam model and equation (20). (a) O!-resonant case; (b) Resonant case:**, beam model; and ) ) ) ) ), equation (20).
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the estimation is almost identical to the original result, at both o!-resonance and resonance.
Therefore, the di!erence between the 2-d.o.f. model results and the modal analysis
calculations can be attributed to the e!ect of mode shape and can be accounted for by
equation (15b).

5. FLUID}CYLINDER INTERACTION EFFECTS

Most studies of #ow-induced vibration concentrate on the structural response and
the #ow-induced forces. Seldom attention was paid to the interaction phenomenon and
the associated e!ective and #uid damping. Using ARMA, Zhou et al. [29] examined the
e!ective damping associated with the free vibration of a single cylinder in a cross-#ow.
The method proposed by them has been used to deduce the e!ective damping ratio for the



Figure 11. Span-wise vibration of the cylinder in the lift direction: comparison of the predictions by using the
beam model and equation (21): **, beam model; and ) ) ) ) ), equation (21).

262 X. Q. WANG E¹ A¸.
di!erent modes and reported in section 3.1. In this section, an attempt is made to evaluate
the #uid}structure interaction. The present objective is not intended to study this problem
extensively, however, some results are presented to help understand this important
behavior.

5.1. FORCE}DISPLACEMENT CORRELATION

As can be seen from Figure 9, the span-wise distribution of C@
L
, C@

D
and St appear to be

constant along the cylinder span, implying that the dominant frequencies and the
magnitudes of the #uid forces are independent of the span-wise location. This is consistent
with the "nding of West and Apelt [14] based on experimental measurements at higher Re
in the sub-critical range. The span-wise vibration amplitude of the cylinder is not constant,
though. This implies that cylinder motion in the #uid}structure interaction phenomenon
does not a!ect the r.m.s. magnitude and the dominant frequency of the #uid force
signi"cantly. However, it would be enlightening to further investigate the correlation
between the force and the corresponding response, which is an indicator of the phase
di!erence between them.

The correlation between two signals is de"ned as

K(P, Q)"E[(P!k
P
)]E[(Q!k

Q
)]/(p

P
p
Q
), (19)

where P and Q are the time series of two signals, k is the mean, and p is the standard
deviation of the signal. The correlation between the #uid forces and the corresponding
cylinder displacements along the cylinder span is shown in Figure 12. First consider the
correlation between C

L
and >/D. If #uid}structure interaction is not present, the

correlation could be calculated by assuming that the #uid force is external to the structural
vibration in equation (10). The results are K(C

L
, >/D)"0)0035 at resonance and

K(C
L
, >/D)"0)9989 in the o!-resonant case. When #uid}structure interaction is present, it



Figure 12. The correlation of the #uid force and corresponding displacement of the cylinder. (a) Transverse
direction; (b) stream-wise direction: *#]*#]*, o!-resonant case; *s*s*, resonant case.
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can be seen that the phenomenon changes the correlation signi"cantly. At resonance,
K(C

L
, >/D) is constant along the cylinder span and the value is around 0)9985. This

indicates that, at resonance, the #uid}structure interaction synchronizes the #uid force and
the cylinder vibration, not only in the frequency but also in the phase relation between
them. Compared with the correlation when no interaction exists, K(C

L
, >/D) changes from

0)0035 to 0)9985, that is, the phase di!erence between the force and the response is
approximately n/2 shifted by the interaction. In the o!-resonant case, K (C

L
, >/D) shows

a span-wise variation from !0)5242 to !0)6513, that is, the phase di!erence between the
force and the displacement varies from 2n/3, to 3n/4, or n/6 to n/4 shifted by the interaction
phenomenon. This suggests that the e!ects of the #uid}structure interaction on the phase
interaction phenomenon. This suggests that the e!ects of the #uid}structure interaction on
the phase di!erence vary along the span. The span-wise variation of the phase di!erence will
be further discussed in the next section.



Figure 13. Span-wise correlation. (a) The #uid force; (b) the cylinder displacement: *#]*#]*, o!-resonant
case; *s*s*, resonant case.
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In the drag direction, the correlation is close to unity when no interaction is assumed, i.e.
K(C

D
, X/D)"0)9971 at resonance and K(C

D
, X/D)"0)9974 in the o!-resonant case. When

#uid}structure interaction is present, the correlation coe$cient is close to zero;
K(C

D
, X/D)"0)01 at resonance and K(C

D
, X/D)"0)02 in the o!-resonant case and the

phase di!erence is shifted by about n/2.

5.2. SPAN-WISE CORRELATION RESULTS

It is obvious from the above discussion that the correlation of the force and displacement
in the lift direction shows a span-wise variation in the o!-resonant case. In order to analyze
this behavior further, the span-wise correlation of the #uid forces and the cylinder
vibrations is examined. The span-wise correlation of a signal is de"ned as

K[P (z/D), P (0)]"E[(P (z/D)!k
P(z@D)

)]E[(P(0)!k
P(0)

)]/(p
P(Z@D)

p
P(0)

), (20)



Figure 14. Span-wise correlation. (a) The #uid force; (b) the cylinder displacement: *#]*#]*, o!-resonant
case; *s*s*, resonant case.

FLOW-INDUCED VIBRATION OF AN EULER}BERNOULLI BEAM 265
where P is the time series of the concerned signal and mid-span (z/D"0) is used as
a reference point. Consider the span-wise correlation of the lift direction "rst. Figures 13(a)
and 13(b) show the span-wise correlation of C

L
and >/D respectively. In the o!-resonant

case, both the span-wise correlation of C
L

(Figure 13(a)) and that of >/D (Figure 13(b)) vary
along the span. However, the span-wise correlation of C

L
is fairly constant along the central

part of the cylinder and abruptly drops near the ends, while the span-wise correlation of
>/D shows a smooth drop along the cylinder span. This leads to the behavior that the
correlation of the force and the displacement shows smooth drop at the central part and
becomes relatively constant near the ends (Figure 12(a)). At resonance, however, the
span-wise correlation of C

L
and>/D are fairly constant along the span and both are close to

unity. Along with correlation between C
L

and >/D (Figure 12(a)), these results suggest that
the lift force and the >/D displacement of the cylinder synchronize along the cylinder span
in the resonance case.

In the drag direction, the span-wise correlation of C
D

and the corresponding X/D is
shown in Figures 14(a) and 14(b) respectively. The behavior in the resonant and the
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o!-resonant case is similar and di!er from those shown in Figure 13. This can be attributed
to the fact that the #uid force and cylinder vibration in the drag direction are not
synchronized even in the resonant case. It can be seen that while the span-wise correlation
of C

D
is constant and close to unity, that of X/D shows span-wise variation. This indicates

that at di!erent cross-section of the cylinder, the #uid force results in both di!erent
magnitude and di!erent phase of the cylinder response. This behavior is similar to that in
the lift direction in the o!-resonant case where synchronization does not occur either.
Therefore, a signi"cant result of synchronization is that not only the #uid force and the
corresponding cylinder vibration are correlated, the #uid force and the cylinder vibration
are also correlated along the span.

6. CONCLUSIONS

An attempt has been made to couple the Euler}Bernoulli beam model and the
Navier}Stokes equations to study the #ow-induced vibration of an elastic, "nite-span
cylinder with "xed ends. The results are compared with experimental measurements
obtained under essentially identical conditions and the calculations using
a discrete-parameter (2-d.o.f.) structural model. Di!erences between these results are
examined and a correction formula is proposed to render the 2-d.o.f. model results
consistent with the present predictions.

Two experimental cases are simulated; they are the resonant and the o!-resonant case.
The span-wise vibration shape of the cylinder in the lift direction, predicted by the present
method, agree rather well with the experimental results. The statistics and the frequency
spectra of the cylinder vibration at mid-span are then compared in detail, where 2-d.o.f.
model results are also available. The present method and the 2-d.o.f. model give similar
predictions of the magnitude and the dominant frequencies of the #uid forces; however, the
present method predicts larger values of vibration magnitude than the 2-d.o.f. model. This is
shown to be reasonable by a theoretical comparison of the two models. Both models also
give similar predictions of natural frequency and damping ratio of the "rst vibration mode
of the combined #uid}cylinder system, and the present method gives the predictions of the
third vibration mode as well. It is shown that provided the magnitude and the dominant
frequency of the #uid force are not much a!ected by the #uid}structure interaction, the
span-wise vibration can be estimated from the 2-d.o.f. result. A formula has been derived for
such a correction.

The #uid}structure interaction e!ect is demonstrated through the analysis of the
calculated #uid forces, cylinder vibrations and the correlation data between them. It is
found that the feedback of the cylinder vibration a!ects its phase relation with the #uid
force rather than its magnitude and dominant frequency. This suggests that the main e!ect
of the #uid}structure interaction is on the phase relationship. When the #uid force and
the cylinder vibration are in resonance, they are synchronized along the cylinder span, and
the #uid force and the cylinder vibration are also correlated along the span. For the
o!-resonant case, the #uid force has di!erent in#uence on both the magnitude and the
phase of the corresponding cylinder vibration along the span.
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